22 research outputs found

    APPLICATIONS OF MODERN IMAGING TECHNOLOGY IN ORTHOPAEDIC TRAUMA SURGERY

    Get PDF
    Orthopaedic trauma surgery is a complex surgical speciality in which anatomy, physiology and physics are mixed. Proper diagnosing and based on that planning and performing surgery is of crucial matter. This article briefly summarizes available radiological modalities used for diagnostics and for surgical planning. It focuses on utility of rapid prototyping process in trauma surgery. Moreover, a case study in which this technique was used is described. Rapid prototyping proved its usefulness and in future it may become a modality of choice for planning complex trauma procedures.&nbsp

    DIAGNOSTIC FACTORS FOR OPENED AND CLOSED KINEMATIC CHAIN OF VIBROARTHROGRAPHY SIGNALS

    Get PDF
    The paper presents results of preliminary research of vibroarthrography signals recorded from one healthy volunteer. The tests were carried out for the open and closed kinematic chain in the range of motion 90° - 0° - 90°. Analysis included initial signal filtration using the EMD algorithm. The aim was to investigate the occurrence of differences in the values of selected energy and statistical parameters for the cases studied. &nbsp

    ELECTROCARDIOGRAM GENERATION SOFTWARE FOR TESTING OF PARAMETER EXTRACTION ALGORITHMS

    Get PDF
    Fast and automated ECG diagnosis is of great benefit for treatment of cardiovascular and other conditions. The algorithms used to extract parameters need to be precise, robust and efficient. Appropriate training and testing methods for such algorithms need to be implemented for optimal results. This paper presents a software solution for computer ECG generation and a simplified concept of testing process. All the parameters of the resulting generated signal can be tweaked and set properly. Such software can also be beneficial for training and educational use

    USEFULNESS OF RAPID PROTOTYPING IN PLANNING COMPLEX TRAUMA SURGERIES

    Get PDF
    Orthopaedic trauma surgery is a complex surgical speciality in which anatomy, physiology and physics are mixed. Proper diagnosing and based on that planning and performing surgery is of crucial matter. This article presents usefulness of 3D reconstruction in diagnostics and surgical planning. It focuses on utility of computed tomography reconstruction in trauma surgery. Moreover, two cases in which this technique was used is described. Complex 3D reconstruction proved its usefulness and in future it may become a modality of choice for planning complex trauma procedures in which standard implants and approaches are insufficient.&nbsp

    COMPARISON OF SELECTED CLASSIFICATION METHODS BASED ON MACHINE LEARNING AS A DIAGNOSTIC TOOL FOR KNEE JOINT CARTILAGE DAMAGE BASED ON GENERATED VIBROACOUSTIC PROCESSES

    Get PDF
    Osteoarthritis is one of the most common cause of disability among elderly. It can affect every joint in human body, however, it is most prevalent in hip, knee, and hand joints. Early diagnosis of cartilage lesions is essential for fast and accurate treatment, which can prolong joint function. Available diagnostic methods include conventional X-ray, ultrasound and magnetic resonance imaging. However, those diagnostic modalities are not suitable for screening purposes. Vibroarthrography is proposed in literature as a screening method for cartilage lesions. However, exact method of signal acquisition as well as classification method is still not well established in literature. In this study, 84 patients were assessed, of whom 40 were in the control group and 44 in the study group. Cartilage status in the study group was evaluated during surgical treatment. Multilayer perceptron - MLP, radial basis function - RBF, support vector method - SVM and naive classifier – NBC were introduced in this study as classification protocols. Highest accuracy (0.893) was found when MLP was introduced, also RBF classification showed high sensitivity (0.822) and specificity (0.821). On the other hand, NBC showed lowest diagnostic accuracy reaching 0.702. In conclusion vibroarthrography presents a promising diagnostic modality for cartilage evaluation in clinical setting with the use of MLP and RBF classification methods

    APPLICATIONS OF MODERN IMAGING TECHNOLOGY IN ORTHOPAEDIC TRAUMA SURGERY

    Get PDF
    Orthopaedic trauma surgery is a complex surgical speciality in which anatomy, physiology and physics are mixed. Proper diagnosing and based on that planning and performing surgery is of crucial matter. This article briefly summarizes available radiological modalities used for diagnostics and for surgical planning. It focuses on utility of rapid prototyping process in trauma surgery. Moreover, a case study in which this technique was used is described. Rapid prototyping proved its usefulness and in future it may become a modality of choice for planning complex trauma procedures

    Knee MRI Underestimates the Grade of Cartilage Lesions

    No full text
    Purpose: This study was conducted in order to evaluate the clinical utility of MRI in detecting cartilage lesions and its dependence on anatomical location and lesion grade. Methods: A retrospective analysis of MRI reports and arthroscopic findings was performed on 190 consecutive patients treated in one orthopaedic department. MRI protocols were prepared by 18 radiologists from 10 different MRI centers with the use of 1.5 T magnets. The image protocols were selected by reading radiologists. Four hundred and fifty-three chondral lesions in five anatomic locations were identified during this study and graded according to the ICRS classification. Sensitivity, specificity, receiver operating characteristic (ROC), and Bangdiwala’s observer agreement charts were utilized to evaluate the diagnostic performance. Results: Only approximately 30% of MRI showed an adequate cartilage status in all anatomical locations. The sensitivity ranged from 92% in healthy cartilage to 5% in grade I lesions. The specificity differed also grossly depending on the lesion grade, reaching 96.5% in grade four lesions and 38% in healthy cartilage. The medial compartment Bangdiwala’s observer agreement charts show a gross underestimation of cartilage lesions, and the area under the curve (AUC) of ROC surpasses 0.7 only in the medial femoral condyle and patella-femoral joint. Overall, the medial compartment accuracy was significantly higher than the lateral compartment. The MRI showed correspondence of its diagnostic performance with cartilage lesion severity. Conclusion: MRI underestimates the extent of cartilage injury and evaluation of cartilage defects based on MRI should be taken with caution by orthopaedic surgeons in planning surgery. Surgical planning on MRI should take cartilage lesions under consideration, even if no cartilage lesions are reported on the MRI

    Electrocardiogram generation software for testing of parameter extraction algorithms

    No full text
    Fast and automated ECG diagnosis is of great benefit for treatment of cardi-ovascular and other conditions. The algorithms used to extract parameters need to be precise, robust and efficient. Appropriate training and testing methods for such algorithms need to be implemented for optimal results. This paper presents a software solution for computer ECG generation and a simplified concept of testing process. All the parameters of the resulting generated signal can be tweaked and set properly. Such software can also be beneficial for training and educational use

    Effect of Physiological Saline Solution Contamination on Selected Mechanical Properties of Seasoned Acrylic Bone Cements of Medium and High Viscosity

    No full text
    Bone cements play a key role in present-day surgery, including the implantation of hip and knee joint endoprostheses. The correct and durable bonding of the prosthesis to the bone is affected by both the static strength characteristics determined in accordance with ISO 5833:2002 and the resistance to long-term exposure to an aggressive environment of the human body and the impurities that may be introduced into the cement during implementation. The study attempts to demonstrate statistically significant degradation of cement as a result of the seasoning of cement samples in Ringer’s solution with simultaneous contamination of the material with saline solution, which is usually present in the surgical field (e.g., during the fixing of endoprostheses). The results of statistical analysis showed the nature of changes in compressive strength and microhardness due to seasoning time and degree of contamination

    Stress distribution in the knee joint in relation to tibiofemoral angle using the finite element method

    No full text
    The article presents the results of a preliminary study on the structural analysis of the knee joint, considering changes in the mechanical properties of the articular cartilage of the joint. Studies have been made due to the need to determine the tension distribution occurring in the cartilage of the human knee. This distribution could be the starting point for designing custom made human knee prosthesis. Basic anatomy, biomechanical analysis of the knee joint and articular cartilage was introduced. Based on a series of computed tomography [CT] scans, the 3D model of human knee joint was reverse-engineered, processed and exported to CAD software. The static mechanical analysis of the knee joint model was conducted using the finite element method [FEM], in three different values of tibiofemoral angle and with varying mechanical properties of the cartilage tissue. Main conclusions of the study are: the capability to absorb loads by articular cartilage of the knee joint is preliminary determined as decreasing with increasing degenerations of the cartilage and with age of a patient. Without further information on changes of cartilage’s mechanical parameters in time it is hard to determine the nature of relation between mentioned capability and these parameters
    corecore